Matchings in Geometric Graphs

نویسنده

  • Ahmad Biniaz
چکیده

A geometric graph is a graph whose vertex set is a set of points in the plane and whose edge set contains straight-line segments. A matching in a graph is a subset of edges of the graph with no shared vertices. A matching is called perfect if it matches all the vertices of the underling graph. A geometric matching is a matching in a geometric graph. In this thesis, we study matching problems in various geometric graphs. Among the family of geometric graphs we look at complete graphs, complete bipartite graphs, complete multipartite graphs, Delaunay graphs, Gabriel graphs, and Θ-graphs. The classical matching problem is to find a matching of maximum size in a given graph. We study this problem as well as some of its variants on geometric graphs. The bottleneck matching problem is to find a maximum matching that minimizes the length of the longest edge. The plane matching problem is to find a maximum matching so that the edges in the matching are pairwise non-crossing. A geometric matching is strong with respect to a given shape S if we can assign to each edge in the matching a scaled version of S such that the shapes representing the edges are pairwise disjoint. The strong matching problem is to find the maximum strong matching with respect to a given shape. The matching packing problem is to pack as many edge-disjoint perfect matchings as possible into a geometric graph. We study these problems and establish lower and upper bounds on the size of different kinds of matchings in various geometric graphs. We also present algorithms for computing such matchings. Some of the presented bounds are tight, while the others need to be sharpened.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Coverings, matchings and paired domination in fuzzy graphs using strong arcs

The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...

متن کامل

Ramsey and Turán-type problems for non-crossing subgraphs of bipartite geometric graphs

Geometric versions of Ramsey-type and Turán-type problems are studied in a special but natural representation of bipartite graphs and similar questions are asked for general representations. A bipartite geometric graphG(m,n) = [A,B] is simple if the vertex classes A,B of G(m,n) are represented in R2 as A = {(1, 0), (2, 0), . . . , (m, 0)}, B = {(1, 1), (2, 1), . . . , (n, 1)} and the edge ab is...

متن کامل

Relationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications

ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...

متن کامل

Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends

Given two planar graphs that are defined on the same set of vertices, a RAC simultaneous drawing is a drawing of the two graphs where each graph is drawn planar, no two edges overlap, and edges of one graph can cross edges of the other graph only at right angles. In the geometric version of the problem, vertices are drawn as points and edges as straight-line segments. It is known, however, that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1610.06457  شماره 

صفحات  -

تاریخ انتشار 2016